Drop all duplicate rows across multiple columns in Python Pandas

前端 未结 6 2155
北海茫月
北海茫月 2020-11-21 21:00

The pandas drop_duplicates function is great for \"uniquifying\" a dataframe. However, one of the keyword arguments to pass is take_last=True

6条回答
  •  执念已碎
    2020-11-21 21:25

    Actually, drop rows 0 and 1 only requires (any observations containing matched A and C is kept.):

    In [335]:
    
    df['AC']=df.A+df.C
    In [336]:
    
    print df.drop_duplicates('C', take_last=True) #this dataset is a special case, in general, one may need to first drop_duplicates by 'c' and then by 'a'.
         A  B  C    AC
    2  foo  1  B  fooB
    3  bar  1  A  barA
    
    [2 rows x 4 columns]
    

    But I suspect what you really want is this (one observation containing matched A and C is kept.):

    In [337]:
    
    print df.drop_duplicates('AC')
         A  B  C    AC
    0  foo  0  A  fooA
    2  foo  1  B  fooB
    3  bar  1  A  barA
    
    [3 rows x 4 columns]
    

    Edit:

    Now it is much clearer, therefore:

    In [352]:
    DG=df.groupby(['A', 'C'])   
    print pd.concat([DG.get_group(item) for item, value in DG.groups.items() if len(value)==1])
         A  B  C
    2  foo  1  B
    3  bar  1  A
    
    [2 rows x 3 columns]
    

提交回复
热议问题