How to solve a non-square linear system with R : A X = B
?
(in the case the system has no solution or infinitely many solutions)
Example :
Aim is to solve Ax = b
where A is p by q, x is q by 1 and b is p by 1 for x given A and b.
Approach 1: Generalized Inverse: Moore-Penrose https://en.wikipedia.org/wiki/Generalized_inverse
Multiplying both sides of the equation, we get
A'Ax = A' b
where A' is the transpose of A. Note that A'A is q by q matrix now. One way to solve this now multiply both sides of the equation by the inverse of A'A. Which gives,
x = (A'A)^{-1} A' b
This is the theory behind generalized inverse. Here G = (A'A)^{-1} A' is pseudo-inverse of A.
library(MASS)
ginv(A) %*% B
# [,1]
#[1,] 2.411765
#[2,] -2.282353
#[3,] 2.152941
#[4,] -3.470588
Approach 2: Generalized Inverse using SVD.
@duffymo used SVD to obtain a pseudoinverse of A.
However, last elements of svd(A)$d
may not be quite as small as in this example. So, probably one shouldn't use that method as is. Here's an example where none of the last elements of A is close to zero.
A <- as.matrix(iris[11:13, -5])
A
# Sepal.Length Sepal.Width Petal.Length Petal.Width
# 11 5.4 3.7 1.5 0.2
# 12 4.8 3.4 1.6 0.2
# 13 4.8 3.0 1.4 0.1
svd(A)$d
# [1] 10.7820526 0.2630862 0.1677126
One option would be to look as the singular values in cor(A)
svd(cor(A))$d
# [1] 2.904194e+00 1.095806e+00 1.876146e-16 1.155796e-17
Now, it is clear there is only two large singular values are present. So, one now can apply svd on A to get pseudo-inverse as below.
svda <- svd(A)
G = svda$v[, 1:2] %*% diag(1/svda$d[1:2]) %*% t(svda$u[, 1:2])
# to get x
G %*% B