Removing elements from an array that are in another array

后端 未结 5 922
抹茶落季
抹茶落季 2020-11-30 04:06

Say I have these 2D arrays A and B.

How can I remove elements from A that are in B. (Complement in set theory: A-B)

A=np.asarray([[1,1,1], [1,1,2], [         


        
5条回答
  •  夕颜
    夕颜 (楼主)
    2020-11-30 04:50

    Here is a Numpythonic approach with broadcasting:

    In [83]: A[np.all(np.any((A-B[:, None]), axis=2), axis=0)]
    Out[83]: 
    array([[1, 1, 2],
           [1, 1, 3]])
    

    Here is a timeit with other answer:

    In [90]: def cal_diff(A, B):
       ....:     A_rows = A.view([('', A.dtype)] * A.shape[1])
       ....:     B_rows = B.view([('', B.dtype)] * B.shape[1])
       ....:     return np.setdiff1d(A_rows, B_rows).view(A.dtype).reshape(-1, A.shape[1])
       ....: 
    
    In [93]: %timeit cal_diff(A, B)
    10000 loops, best of 3: 54.1 µs per loop
    
    In [94]: %timeit A[np.all(np.any((A-B[:, None]), axis=2), axis=0)]
    100000 loops, best of 3: 9.41 µs per loop
    
    # Even better with Divakar's suggestion
    In [97]: %timeit A[~((A[:,None,:] == B).all(-1)).any(1)]
    100000 loops, best of 3: 7.41 µs per loop
    

    Well, if you are looking for a faster way you should looking for ways that reduce the number of comparisons. In this case (without considering the order) you can generate a unique number from your rows and compare the numbers which can be done with summing the items power of two.

    Here is the benchmark with Divakar's in1d approach:

    In [144]: def in1d_approach(A,B):
       .....:         dims = np.maximum(B.max(0),A.max(0))+1
       .....:         return A[~np.in1d(np.ravel_multi_index(A.T,dims),\
       .....:                          np.ravel_multi_index(B.T,dims))]
       .....: 
    
    In [146]: %timeit in1d_approach(A, B)
    10000 loops, best of 3: 23.8 µs per loop
    
    In [145]: %timeit A[~np.in1d(np.power(A, 2).sum(1), np.power(B, 2).sum(1))]
    10000 loops, best of 3: 20.2 µs per loop
    

    You can use np.diff to get the an order independent result:

    In [194]: B=np.array([[0, 0, 0,], [1, 0, 2,], [1, 0, 3,], [1, 0, 4,], [1, 1, 0,], [1, 1, 1,], [1, 1, 4,], [4, 1, 1]])
    
    In [195]: A[~np.in1d(np.diff(np.diff(np.power(A, 2))), np.diff(np.diff(np.power(B, 2))))]
    Out[195]: 
    array([[1, 1, 2],
           [1, 1, 3]])
    
    In [196]: %timeit A[~np.in1d(np.diff(np.diff(np.power(A, 2))), np.diff(np.diff(np.power(B, 2))))]
    10000 loops, best of 3: 30.7 µs per loop
    

    Benchmark with Divakar's setup:

    In [198]: B = np.random.randint(0,9,(1000,3))
    
    In [199]: A = np.random.randint(0,9,(100,3))
    
    In [200]: A_idx = np.random.choice(np.arange(A.shape[0]),size=10,replace=0)
    
    In [201]: B_idx = np.random.choice(np.arange(B.shape[0]),size=10,replace=0)
    
    In [202]: A[A_idx] = B[B_idx]
    
    In [203]: %timeit A[~np.in1d(np.diff(np.diff(np.power(A, 2))), np.diff(np.diff(np.power(B, 2))))]
    10000 loops, best of 3: 137 µs per loop
    
    In [204]: %timeit A[~np.in1d(np.power(A, 2).sum(1), np.power(B, 2).sum(1))]
    10000 loops, best of 3: 112 µs per loop
    
    In [205]: %timeit in1d_approach(A, B)
    10000 loops, best of 3: 115 µs per loop
    

    Timing with larger arrays (Divakar's solution is slightly faster):

    In [231]: %timeit A[~np.in1d(np.diff(np.diff(np.power(A, 2))), np.diff(np.diff(np.power(B, 2))))]
    1000 loops, best of 3: 1.01 ms per loop
    
    In [232]: %timeit A[~np.in1d(np.power(A, 2).sum(1), np.power(B, 2).sum(1))]
    1000 loops, best of 3: 880 µs per loop
    
    In [233]:  %timeit in1d_approach(A, B)
    1000 loops, best of 3: 807 µs per loop
    

提交回复
热议问题