Removing elements from an array that are in another array

后端 未结 5 902
抹茶落季
抹茶落季 2020-11-30 04:06

Say I have these 2D arrays A and B.

How can I remove elements from A that are in B. (Complement in set theory: A-B)

A=np.asarray([[1,1,1], [1,1,2], [         


        
5条回答
  •  爱一瞬间的悲伤
    2020-11-30 04:34

    Based on this solution to Find the row indexes of several values in a numpy array, here's a NumPy based solution with less memory footprint and could be beneficial when working with large arrays -

    dims = np.maximum(B.max(0),A.max(0))+1
    out = A[~np.in1d(np.ravel_multi_index(A.T,dims),np.ravel_multi_index(B.T,dims))]
    

    Sample run -

    In [38]: A
    Out[38]: 
    array([[1, 1, 1],
           [1, 1, 2],
           [1, 1, 3],
           [1, 1, 4]])
    
    In [39]: B
    Out[39]: 
    array([[0, 0, 0],
           [1, 0, 2],
           [1, 0, 3],
           [1, 0, 4],
           [1, 1, 0],
           [1, 1, 1],
           [1, 1, 4]])
    
    In [40]: out
    Out[40]: 
    array([[1, 1, 2],
           [1, 1, 3]])
    

    Runtime test on large arrays -

    In [107]: def in1d_approach(A,B):
         ...:     dims = np.maximum(B.max(0),A.max(0))+1
         ...:     return A[~np.in1d(np.ravel_multi_index(A.T,dims),\
         ...:                     np.ravel_multi_index(B.T,dims))]
         ...: 
    
    In [108]: # Setup arrays with B as large array and A contains some of B's rows
         ...: B = np.random.randint(0,9,(1000,3))
         ...: A = np.random.randint(0,9,(100,3))
         ...: A_idx = np.random.choice(np.arange(A.shape[0]),size=10,replace=0)
         ...: B_idx = np.random.choice(np.arange(B.shape[0]),size=10,replace=0)
         ...: A[A_idx] = B[B_idx]
         ...: 
    

    Timings with broadcasting based solutions -

    In [109]: %timeit A[np.all(np.any((A-B[:, None]), axis=2), axis=0)]
    100 loops, best of 3: 4.64 ms per loop # @Kasramvd's soln
    
    In [110]: %timeit A[~((A[:,None,:] == B).all(-1)).any(1)]
    100 loops, best of 3: 3.66 ms per loop
    

    Timing with less memory footprint based solution -

    In [111]: %timeit in1d_approach(A,B)
    1000 loops, best of 3: 231 µs per loop
    

    Further performance boost

    in1d_approach reduces each row by considering each row as an indexing tuple. We can do the same a bit more efficiently by introducing matrix-multiplication with np.dot, like so -

    def in1d_dot_approach(A,B):
        cumdims = (np.maximum(A.max(),B.max())+1)**np.arange(B.shape[1])
        return A[~np.in1d(A.dot(cumdims),B.dot(cumdims))]
    

    Let's test it against the previous on much larger arrays -

    In [251]: # Setup arrays with B as large array and A contains some of B's rows
         ...: B = np.random.randint(0,9,(10000,3))
         ...: A = np.random.randint(0,9,(1000,3))
         ...: A_idx = np.random.choice(np.arange(A.shape[0]),size=10,replace=0)
         ...: B_idx = np.random.choice(np.arange(B.shape[0]),size=10,replace=0)
         ...: A[A_idx] = B[B_idx]
         ...: 
    
    In [252]: %timeit in1d_approach(A,B)
    1000 loops, best of 3: 1.28 ms per loop
    
    In [253]: %timeit in1d_dot_approach(A, B)
    1000 loops, best of 3: 1.2 ms per loop
    

提交回复
热议问题