There\'s been some debate going on in this question about whether the following code is legal C++:
std::list- ::iterator i = items.begin();
while
To build on MarkusQ's answer: ;)
Or rather, Bill's comment to it:
(Edit: Aw, the comment is gone again... Oh well)
They're allowed to be evaluated in parallel. Whether or not it happens in practice is technically speaking irrelevant.
You don't need thread parallelism for this to occur though, just evaluate the first step of both (take the value of i) before the second (increment i). Perfectly legal, and some compilers may consider it more efficient than fully evaluating one i++ before starting on the second.
In fact, I'd expect it to be a common optimization. Look at it from an instruction scheduling point of view. You have the following you need to evaluate:
But there's really no dependency between the left and the right argument. Argument evaluation happens in an unspecified order, and need not be done sequentially either (which is why new() in function arguments is usually a memory leak, even when wrapped in a smart pointer) It's also undefined what happens when you modify the same variable twice in the same expression. We do have a dependency between 1 and 2, however, and between 3 and 4. So why would the compiler wait for 2 to complete before computing 3? That introduces added latency, and it'll take even longer than necessary before 4 becomes available. Assuming there's a 1 cycle latency between each, it'll take 3 cycles from 1 is complete until the result of 4 is ready and we can call the function.
But if we reorder them and evaluate in the order 1, 3, 2, 4, we can do it in 2 cycles. 1 and 3 can be started in the same cycle (or even merged into one instruction, since it's the same expression), and in the following, 2 and 4 can be evaluated. All modern CPU's can execute 3-4 instructions per cycle, and a good compiler should try to exploit that.