Python\'s curve_fit calculates the best-fit parameters for a function with a single independent variable, but is there a way, using curve_fit or something else,
Fitting to an unknown numer of parameters
In this example, we try to reproduce some measured data measData.
In this example measData is generated by the function measuredData(x, a=.2, b=-2, c=-.8, d=.1). I practice, we might have measured measData in a way - so we have no idea, how it is described mathematically. Hence the fit.
We fit by a polynomial, which is described by the function polynomFit(inp, *args). As we want to try out different orders of polynomials, it is important to be flexible in the number of input parameters.
The independent variables (x and y in your case) are encoded in the 'columns'/second dimension of inp.
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
def measuredData(inp, a=.2, b=-2, c=-.8, d=.1):
x=inp[:,0]
y=inp[:,1]
return a+b*x+c*x**2+d*x**3 +y
def polynomFit(inp, *args):
x=inp[:,0]
y=inp[:,1]
res=0
for order in range(len(args)):
print(14,order,args[order],x)
res+=args[order] * x**order
return res +y
inpData=np.linspace(0,10,20).reshape(-1,2)
inpDataStr=['({:.1f},{:.1f})'.format(a,b) for a,b in inpData]
measData=measuredData(inpData)
fig, ax = plt.subplots()
ax.plot(np.arange(inpData.shape[0]), measData, label='measuered', marker='o', linestyle='none' )
for order in range(5):
print(27,inpData)
print(28,measData)
popt, pcov = curve_fit(polynomFit, xdata=inpData, ydata=measData, p0=[0]*(order+1) )
fitData=polynomFit(inpData,*popt)
ax.plot(np.arange(inpData.shape[0]), fitData, label='polyn. fit, order '+str(order), linestyle='--' )
ax.legend( loc='upper left', bbox_to_anchor=(1.05, 1))
print(order, popt)
ax.set_xticklabels(inpDataStr, rotation=90)
Result: