What is the recommended way of serializing a namedtuple to json with the field names retained?
Serializing a namedtuple to json results in only the valu
This is pretty tricky, since namedtuple() is a factory which returns a new type derived from tuple. One approach would be to have your class also inherit from UserDict.DictMixin, but tuple.__getitem__ is already defined and expects an integer denoting the position of the element, not the name of its attribute:
>>> f = foobar('a', 1)
>>> f[0]
'a'
At its heart the namedtuple is an odd fit for JSON, since it is really a custom-built type whose key names are fixed as part of the type definition, unlike a dictionary where key names are stored inside the instance. This prevents you from "round-tripping" a namedtuple, e.g. you cannot decode a dictionary back into a namedtuple without some other a piece of information, like an app-specific type marker in the dict {'a': 1, '#_type': 'foobar'}, which is a bit hacky.
This is not ideal, but if you only need to encode namedtuples into dictionaries, another approach is to extend or modify your JSON encoder to special-case these types. Here is an example of subclassing the Python json.JSONEncoder. This tackles the problem of ensuring that nested namedtuples are properly converted to dictionaries:
from collections import namedtuple
from json import JSONEncoder
class MyEncoder(JSONEncoder):
def _iterencode(self, obj, markers=None):
if isinstance(obj, tuple) and hasattr(obj, '_asdict'):
gen = self._iterencode_dict(obj._asdict(), markers)
else:
gen = JSONEncoder._iterencode(self, obj, markers)
for chunk in gen:
yield chunk
class foobar(namedtuple('f', 'foo, bar')):
pass
enc = MyEncoder()
for obj in (foobar('a', 1), ('a', 1), {'outer': foobar('x', 'y')}):
print enc.encode(obj)
{"foo": "a", "bar": 1}
["a", 1]
{"outer": {"foo": "x", "bar": "y"}}