Basically, I\'m doing some data analysis. I read in a dataset as a numpy.ndarray and some of the values are missing (either by just not being there, being NaN,
>>> a = np.array([[1,2,3], [4,5,np.nan], [7,8,9]])
array([[ 1., 2., 3.],
[ 4., 5., nan],
[ 7., 8., 9.]])
>>> a[~np.isnan(a).any(axis=1)]
array([[ 1., 2., 3.],
[ 7., 8., 9.]])
and reassign this to a.
Explanation: np.isnan(a) returns a similar array with True where NaN, False elsewhere. .any(axis=1) reduces an m*n array to n with an logical or operation on the whole rows, ~ inverts True/False and a[ ] chooses just the rows from the original array, which have True within the brackets.