How do I verify that a string only contains letters, numbers, underscores and dashes?

前端 未结 11 967
小鲜肉
小鲜肉 2020-11-29 18:51

I know how to do this if I iterate through all of the characters in the string but I am looking for a more elegant method.

11条回答
  •  孤城傲影
    2020-11-29 19:14

    [Edit] There's another solution not mentioned yet, and it seems to outperform the others given so far in most cases.

    Use string.translate to replace all valid characters in the string, and see if we have any invalid ones left over. This is pretty fast as it uses the underlying C function to do the work, with very little python bytecode involved.

    Obviously performance isn't everything - going for the most readable solutions is probably the best approach when not in a performance critical codepath, but just to see how the solutions stack up, here's a performance comparison of all the methods proposed so far. check_trans is the one using the string.translate method.

    Test code:

    import string, re, timeit
    
    pat = re.compile('[\w-]*$')
    pat_inv = re.compile ('[^\w-]')
    allowed_chars=string.ascii_letters + string.digits + '_-'
    allowed_set = set(allowed_chars)
    trans_table = string.maketrans('','')
    
    def check_set_diff(s):
        return not set(s) - allowed_set
    
    def check_set_all(s):
        return all(x in allowed_set for x in s)
    
    def check_set_subset(s):
        return set(s).issubset(allowed_set)
    
    def check_re_match(s):
        return pat.match(s)
    
    def check_re_inverse(s): # Search for non-matching character.
        return not pat_inv.search(s)
    
    def check_trans(s):
        return not s.translate(trans_table,allowed_chars)
    
    test_long_almost_valid='a_very_long_string_that_is_mostly_valid_except_for_last_char'*99 + '!'
    test_long_valid='a_very_long_string_that_is_completely_valid_' * 99
    test_short_valid='short_valid_string'
    test_short_invalid='/$%$%&'
    test_long_invalid='/$%$%&' * 99
    test_empty=''
    
    def main():
        funcs = sorted(f for f in globals() if f.startswith('check_'))
        tests = sorted(f for f in globals() if f.startswith('test_'))
        for test in tests:
            print "Test %-15s (length = %d):" % (test, len(globals()[test]))
            for func in funcs:
                print "  %-20s : %.3f" % (func, 
                       timeit.Timer('%s(%s)' % (func, test), 'from __main__ import pat,allowed_set,%s' % ','.join(funcs+tests)).timeit(10000))
            print
    
    if __name__=='__main__': main()
    

    The results on my system are:

    Test test_empty      (length = 0):
      check_re_inverse     : 0.042
      check_re_match       : 0.030
      check_set_all        : 0.027
      check_set_diff       : 0.029
      check_set_subset     : 0.029
      check_trans          : 0.014
    
    Test test_long_almost_valid (length = 5941):
      check_re_inverse     : 2.690
      check_re_match       : 3.037
      check_set_all        : 18.860
      check_set_diff       : 2.905
      check_set_subset     : 2.903
      check_trans          : 0.182
    
    Test test_long_invalid (length = 594):
      check_re_inverse     : 0.017
      check_re_match       : 0.015
      check_set_all        : 0.044
      check_set_diff       : 0.311
      check_set_subset     : 0.308
      check_trans          : 0.034
    
    Test test_long_valid (length = 4356):
      check_re_inverse     : 1.890
      check_re_match       : 1.010
      check_set_all        : 14.411
      check_set_diff       : 2.101
      check_set_subset     : 2.333
      check_trans          : 0.140
    
    Test test_short_invalid (length = 6):
      check_re_inverse     : 0.017
      check_re_match       : 0.019
      check_set_all        : 0.044
      check_set_diff       : 0.032
      check_set_subset     : 0.037
      check_trans          : 0.015
    
    Test test_short_valid (length = 18):
      check_re_inverse     : 0.125
      check_re_match       : 0.066
      check_set_all        : 0.104
      check_set_diff       : 0.051
      check_set_subset     : 0.046
      check_trans          : 0.017
    

    The translate approach seems best in most cases, dramatically so with long valid strings, but is beaten out by regexes in test_long_invalid (Presumably because the regex can bail out immediately, but translate always has to scan the whole string). The set approaches are usually worst, beating regexes only for the empty string case.

    Using all(x in allowed_set for x in s) performs well if it bails out early, but can be bad if it has to iterate through every character. isSubSet and set difference are comparable, and are consistently proportional to the length of the string regardless of the data.

    There's a similar difference between the regex methods matching all valid characters and searching for invalid characters. Matching performs a little better when checking for a long, but fully valid string, but worse for invalid characters near the end of the string.

提交回复
热议问题