I keep hearing people complaining that C++ doesn\'t have garbage collection. I also hear that the C++ Standards Committee is looking at adding it to the language. I\'m afrai
using RAII with smart pointers eliminates the need for it, right?
Smart pointers can be used to implement reference counting in C++ which is a form of garbage collection (automatic memory management) but production GCs no longer use reference counting because it has some important deficiencies:
Reference counting leaks cycles. Consider A↔B, both objects A and B refer to each other so they both have a reference count of 1 and neither is collected but they should both be reclaimed. Advanced algorithms like trial deletion solve this problem but add a lot of complexity. Using weak_ptr as a workaround is falling back to manual memory management.
Naive reference counting is slow for several reasons. Firstly, it requires out-of-cache reference counts to be bumped often (see Boost's shared_ptr up to 10× slower than OCaml's garbage collection). Secondly, destructors injected at the end of scope can incur unnecessary-and-expensive virtual function calls and inhibit optimizations such as tail call elimination.
Scope-based reference counting keeps floating garbage around as objects are not recycled until the end of scope whereas tracing GCs can reclaim them as soon as they become unreachable, e.g. can a local allocated before a loop be reclaimed during the loop?
What advantages could garbage collection offer an experienced C++ developer?
Productivity and reliability are the main benefits. For many applications, manual memory management requires significant programmer effort. By simulating an infinite-memory machine, garbage collection liberates the programmer from this burden which allows them to focus on problem solving and evades some important classes of bugs (dangling pointers, missing free, double free). Furthermore, garbage collection facilitates other forms of programming, e.g. by solving the upwards funarg problem (1970).