There are a lot of answers to "what", but none to "why".
As everyone else has said, asymptotic analysis is about how the performance of a given operation scales to a large data set. Amortized analysis is about how the average of the performance of all of the operations on a large data set scales. Amortized analysis never gives worse bounds than asymptotic, and sometimes gives much better ones.
If you are concerned with the total running time of a longer job, the better bounds of amortized analysis are probably what you care about. Which is why scripting languages (for instance) are often happy to grow arrays and hash tables by some factor even though that is an expensive operation. (The growing can be a O(n) operation, but amortized is O(1) because you do it rarely.)
If you are doing real time programming (individual operations must complete in a predictable time), then the better bounds from amortized analysis don't matter. It doesn't matter if the operation on average was fast, if you failed to finish it in time to get back and adjust the bandsaw before it cut too far...
Which one matters in your case depends on exactly what your programming problem is.