How to plot ROC curve in Python

后端 未结 11 2256
臣服心动
臣服心动 2020-11-29 16:15

I am trying to plot a ROC curve to evaluate the accuracy of a prediction model I developed in Python using logistic regression packages. I have computed the true positive ra

11条回答
  •  爱一瞬间的悲伤
    2020-11-29 16:33

    I have made a simple function included in a package for the ROC curve. I just started practicing machine learning so please also let me know if this code has any problem!

    Have a look at the github readme file for more details! :)

    https://github.com/bc123456/ROC

    from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score, roc_curve
    import matplotlib.pyplot as plt
    import seaborn as sns
    import numpy as np
    
    def plot_ROC(y_train_true, y_train_prob, y_test_true, y_test_prob):
        '''
        a funciton to plot the ROC curve for train labels and test labels.
        Use the best threshold found in train set to classify items in test set.
        '''
        fpr_train, tpr_train, thresholds_train = roc_curve(y_train_true, y_train_prob, pos_label =True)
        sum_sensitivity_specificity_train = tpr_train + (1-fpr_train)
        best_threshold_id_train = np.argmax(sum_sensitivity_specificity_train)
        best_threshold = thresholds_train[best_threshold_id_train]
        best_fpr_train = fpr_train[best_threshold_id_train]
        best_tpr_train = tpr_train[best_threshold_id_train]
        y_train = y_train_prob > best_threshold
    
        cm_train = confusion_matrix(y_train_true, y_train)
        acc_train = accuracy_score(y_train_true, y_train)
        auc_train = roc_auc_score(y_train_true, y_train)
    
        print 'Train Accuracy: %s ' %acc_train
        print 'Train AUC: %s ' %auc_train
        print 'Train Confusion Matrix:'
        print cm_train
    
        fig = plt.figure(figsize=(10,5))
        ax = fig.add_subplot(121)
        curve1 = ax.plot(fpr_train, tpr_train)
        curve2 = ax.plot([0, 1], [0, 1], color='navy', linestyle='--')
        dot = ax.plot(best_fpr_train, best_tpr_train, marker='o', color='black')
        ax.text(best_fpr_train, best_tpr_train, s = '(%.3f,%.3f)' %(best_fpr_train, best_tpr_train))
        plt.xlim([0.0, 1.0])
        plt.ylim([0.0, 1.0])
        plt.xlabel('False Positive Rate')
        plt.ylabel('True Positive Rate')
        plt.title('ROC curve (Train), AUC = %.4f'%auc_train)
    
        fpr_test, tpr_test, thresholds_test = roc_curve(y_test_true, y_test_prob, pos_label =True)
    
        y_test = y_test_prob > best_threshold
    
        cm_test = confusion_matrix(y_test_true, y_test)
        acc_test = accuracy_score(y_test_true, y_test)
        auc_test = roc_auc_score(y_test_true, y_test)
    
        print 'Test Accuracy: %s ' %acc_test
        print 'Test AUC: %s ' %auc_test
        print 'Test Confusion Matrix:'
        print cm_test
    
        tpr_score = float(cm_test[1][1])/(cm_test[1][1] + cm_test[1][0])
        fpr_score = float(cm_test[0][1])/(cm_test[0][0]+ cm_test[0][1])
    
        ax2 = fig.add_subplot(122)
        curve1 = ax2.plot(fpr_test, tpr_test)
        curve2 = ax2.plot([0, 1], [0, 1], color='navy', linestyle='--')
        dot = ax2.plot(fpr_score, tpr_score, marker='o', color='black')
        ax2.text(fpr_score, tpr_score, s = '(%.3f,%.3f)' %(fpr_score, tpr_score))
        plt.xlim([0.0, 1.0])
        plt.ylim([0.0, 1.0])
        plt.xlabel('False Positive Rate')
        plt.ylabel('True Positive Rate')
        plt.title('ROC curve (Test), AUC = %.4f'%auc_test)
        plt.savefig('ROC', dpi = 500)
        plt.show()
    
        return best_threshold
    

    A sample roc graph produced by this code

提交回复
热议问题