I\'m trying to find the definition of a binary search tree and I keep finding different definitions everywhere.
Some say that for any given subtree the left child k
All three definitions are acceptable and correct. They define different variations of a BST.
Your college data structure's book failed to clarify that its definition was not the only possible.
Certainly, allowing duplicates adds complexity. If you use the definition "left <= root < right" and you have a tree like:
3
/ \
2 4
then adding a "3" duplicate key to this tree will result in:
3
/ \
2 4
\
3
Note that the duplicates are not in contiguous levels.
This is a big issue when allowing duplicates in a BST representation as the one above: duplicates may be separated by any number of levels, so checking for duplicate's existence is not that simple as just checking for immediate childs of a node.
An option to avoid this issue is to not represent duplicates structurally (as separate nodes) but instead use a counter that counts the number of occurrences of the key. The previous example would then have a tree like:
3(1)
/ \
2(1) 4(1)
and after insertion of the duplicate "3" key it will become:
3(2)
/ \
2(1) 4(1)
This simplifies lookup, removal and insertion operations, at the expense of some extra bytes and counter operations.