Write a program to find 100 largest numbers out of an array of 1 billion numbers

前端 未结 30 2143
深忆病人
深忆病人 2020-11-29 14:04

I recently attended an interview where I was asked \"write a program to find 100 largest numbers out of an array of 1 billion numbers.\"

I was only able to give a br

30条回答
  •  迷失自我
    2020-11-29 14:52

    The simplest solution is to scan the billion numbers large array and hold the 100 largest values found so far in a small array buffer without any sorting and remember the smallest value of this buffer. First I thought this method was proposed by fordprefect but in a comment he said that he assumed the 100 number data structure being implemented as a heap. Whenever a new number is found that is larger then the minimum in the buffer is overwritten by the new value found and the buffer is searched for the current minimum again. If the numbers in billion number array are randomly distributed most of the time the value from the large array is compared to the minimum of the small array and discarded. Only for a very very small fraction of number the value must be inserted into the small array. So the difference of manipulating the data structure holding the small numbers can be neglected. For a small number of elements it is hard to determine if the usage of a priority queue is actually faster than using my naive approach.

    I want to estimate the number of inserts in the small 100 element array buffer when the 10^9 element array is scanned. The program scans the first 1000 elements of this large array and has to insert at most 1000 elements in the buffer. The buffer contains 100 element of the 1000 elements scanned, that is 0.1 of the element scanned. So we assume that the probability that a value from the large array is larger than the current minimum of the buffer is about 0.1 Such an element has to be inserted in the buffer . Now the program scans the next 10^4 elements from the large array. Because the minimum of the buffer will increase every time a new element is inserted. We estimated that the ratio of elements larger than our current minimum is about 0.1 and so there are 0.1*10^4=1000 elements to insert. Actually the expected number of elements that are inserted into the buffer will be smaller. After the scan of this 10^4 elements fraction of the numbers in the buffer will be about 0.01 of the elements scanned so far. So when scanning the next 10^5 numbers we assume that not more than 0.01*10^5=1000 will be inserted in the buffer. Continuing this argumentation we have inserted about 7000 values after scanning 1000+10^4+10^5+...+10^9 ~ 10^9 elements of the large array. So when scanning an array with 10^9 elements of random size we expect not more than 10^4 (=7000 rounded up) insertions in the buffer. After each insertion into the buffer the new minimum must be found. If the buffer is a simple array we need 100 comparison to find the new minimum. If the buffer is another data structure (like a heap) we need at least 1 comparison to find the minimum. To compare the elements of the large array we need 10^9 comparisons. So all in all we need about 10^9+100*10^4=1.001 * 10^9 comparisons when using an array as buffer and at least 1.000 * 10^9 comparisons when using another type of data structure (like a heap). So using a heap brings only a gain of 0.1% if performance is determined by the number of comparison. But what is the difference in execution time between inserting an element in a 100 element heap and replacing an element in an 100 element array and finding its new minimum?

    • At the theoretical level: How many comparisons are needed for inserting in a heap. I know it is O(log(n)) but how large is the constant factor? I

    • At the machine level: What is the impact of caching and branch prediction on the execution time of a heap insert and a linear search in an array.

    • At the implementation level: What additional costs are hidden in a heap data structure supplied by a library or a compiler?

    I think these are some of the questions that have to be answered before one can try to estimate the real difference between the performance of a 100 element heap or a 100 element array. So it would make sense to make an experiment and measure the real performance.

提交回复
热议问题