Lets say I have a routine that scans an entire list of n items 3 times, does a sort based on the size, and then bsearches that sorted list n times. The scans are O(n) time,
As Ray said, the answer is indeed O(n log(n)). The interesting part of this question is that it doesn't matter which way you look at it: does adding mean "actual addition" or does it mean "the worst case". Let's prove that these two ways of looking at it produce the same result.
Let f(n) and g(n) be functions, and without loss of generality suppose f is O(g). (Informally, that g is "worse" than f.) Then by definition, there exists constants M and k such that f(n) < M*g(n) whenever n > k. If we look at in the "worst case" way, we expect that f(n)+g(n) is O(g(n)). Now looking at it in the "actual addition" way, and specializing to the case where n > k, we have f(n) + g(n) < M*g(n) + g(n) = (M+1)*g(n), and so by definition f(n)+g(n) is O(g(n)) as desired.