There is a package called 'disarray'.
So, if I have four classes :
import numpy as np
a = np.random.randint(0,4,[100])
b = np.random.randint(0,4,[100])
I can use disarray to calculate 13 matrices :
import disarray
# Instantiate the confusion matrix DataFrame with index and columns
cm = confusion_matrix(a,b)
df = pd.DataFrame(cm, index= ['a','b','c','d'], columns=['a','b','c','d'])
df.da.export_metrics()
which gives :