I already know when a fraction is repeating decimals. Here is the function.
public bool IsRepeatingDecimal
{
get
{
if (Numerator % Denominato
I came here expecting to be able to copy & paste the code to do this, but it didn't exist. So after reading @Patrick87's answer, I went ahead and coded it up. I spent some time testing it thoroughly and giving things a nice name. I thought I would leave it here so others don't have to waste their time.
Features:
If the decimal terminates, it handles that. It calculates the period and puts that in a separate variable called period, in case you want to know the length of the reptend.
Limitations:
It will fail if the transient + reptend is longer than can be represented by a System.Decimal.
public static string FormatDecimalExpansion(RationalNumber value)
{
RationalNumber currentValue = value;
string decimalString = value.ToDecimal().ToString();
int currentIndex = decimalString.IndexOf('.');
Dictionary dict = new Dictionary();
while (!dict.ContainsKey(currentValue))
{
dict.Add(currentValue, currentIndex);
int rem = currentValue.Numerator % currentValue.Denominator;
int carry = rem * 10;
if (rem == 0) // Terminating decimal
{
return decimalString;
}
currentValue = new RationalNumber(carry, currentValue.Denominator);
currentIndex++;
}
int startIndex = dict[currentValue];
int endIndex = currentIndex;
int period = (endIndex - startIndex); // The period is the length of the reptend
if (endIndex >= decimalString.Length)
{
throw new ArgumentOutOfRangeException(nameof(value),
"The value supplied has a decimal expansion that is longer" +
$" than can be represented by value of type {nameof(System.Decimal)}.");
}
string transient = decimalString.Substring(0, startIndex);
string reptend = decimalString.Substring(startIndex, period);
return transient + $"({reptend})";
}
And for good measure, I will include my RationalNumber class. Note: It inherits from IEquatable so that it works correctly with the dictionary:
public struct RationalNumber : IEquatable
{
public int Numerator;
public int Denominator;
public RationalNumber(int numerator, int denominator)
{
Numerator = numerator;
Denominator = denominator;
}
public decimal ToDecimal()
{
return Decimal.Divide(Numerator, Denominator);
}
public bool Equals(RationalNumber other)
{
return (Numerator == other.Numerator && Denominator == other.Denominator);
}
public override int GetHashCode()
{
return new Tuple(Numerator, Denominator).GetHashCode();
}
public override string ToString()
{
return $"{Numerator}/{Denominator}";
}
}
Enjoy!