There is a Pandas DataFrame:
Int64Index: 300 entries, 5220 to 5519
Data columns (total 3 columns):
Date
As WillZ pointed out, Pandas 0.21 broke unutbu's workaround. Converting datetimes to dates, however, can have significantly negative impacts on data analysis. This solution currently works and keeps datetime:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
N = 300
dates = pd.date_range('2000-1-1', periods=N, freq='ms')
x = np.linspace(0, 2*np.pi, N)
data = pd.DataFrame({'A': np.sin(x), 'B': np.cos(x),
'Date': dates})
d = data['Date'].dt.to_pydatetime()
plt.plot_date(d, data['A'], '-')
plt.plot_date(d, data['B'], '-')
plt.fill_between(d, data['A'], data['B'],
where=data['A'] >= data['B'],
facecolor='green', alpha=0.2, interpolate=True)
plt.xticks(rotation=25)
plt.show()
EDIT: As per jedi's comment, I set out to determine the fastest approach of the three options below:
method2 was slightly faster, but much more consistent, and thus I have edited the above answer to reflect the best approach.
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import time
N = 300
dates = pd.date_range('2000-1-1', periods=N, freq='ms')
x = np.linspace(0, 2*np.pi, N)
data = pd.DataFrame({'A': np.sin(x), 'B': np.cos(x),
'Date': dates})
time_data = pd.DataFrame(columns=['1', '2', '3', '4', '5', '6', '7', '8', '9', '10'])
method1 = []
method2 = []
method3 = []
for i in range(0, 10):
start = time.clock()
for i in range(0, 500):
d = [pd.Timestamp(x).to_pydatetime() for x in data['Date']]
#d = data['Date'].dt.to_pydatetime()
plt.plot_date(d, data['A'], '-')
plt.plot_date(d, data['B'], '-')
plt.fill_between(d, data['A'], data['B'],
where=data['A'] >= data['B'],
facecolor='green', alpha=0.2, interpolate=True)
plt.xticks(rotation=25)
plt.gcf().clear()
method1.append(time.clock() - start)
for i in range(0, 10):
start = time.clock()
for i in range(0, 500):
#d = [pd.Timestamp(x).to_pydatetime() for x in data['Date']]
d = data['Date'].dt.to_pydatetime()
plt.plot_date(d, data['A'], '-')
plt.plot_date(d, data['B'], '-')
plt.fill_between(d, data['A'], data['B'],
where=data['A'] >= data['B'],
facecolor='green', alpha=0.2, interpolate=True)
plt.xticks(rotation=25)
plt.gcf().clear()
method2.append(time.clock() - start)
for i in range(0, 10):
start = time.clock()
for i in range(0, 500):
#d = [pd.Timestamp(x).to_pydatetime() for x in data['Date']]
#d = data['Date'].dt.to_pydatetime()
plt.plot_date(data['Date'].dt.to_pydatetime(), data['A'], '-')
plt.plot_date(data['Date'].dt.to_pydatetime(), data['B'], '-')
plt.fill_between(data['Date'].dt.to_pydatetime(), data['A'], data['B'],
where=data['A'] >= data['B'],
facecolor='green', alpha=0.2, interpolate=True)
plt.xticks(rotation=25)
plt.gcf().clear()
method3.append(time.clock() - start)
time_data.loc['method1'] = method1
time_data.loc['method2'] = method2
time_data.loc['method3'] = method3
print(time_data)
plt.errorbar(time_data.index, time_data.mean(axis=1), yerr=time_data.std(axis=1))