I am trying to find complexity of Fibonacci series using a recursion tree and concluded height of tree = O(n) worst case, cost of each level = cn,
The complexity of recursive Fibonacci series is 2^n:
This will be the Recurrence Relations for recursive Fibonacci
T(n)=T(n-1)+T(n-2) No of elements 2
Now on solving this relation using substitution method (substituting value of T(n-1) and T(n-2))
T(n)=T(n-2)+2*T(n-3)+T(n-4) No of elements 4=2^2
Again substituting values of above term we will get
T(n)=T(n-3)+3*T(n-4)+3*T(n-5)+T(n-6) No of elements 8=2^3
After solving it completely, we get
T(n)={T(n-k)+---------+---------}----------------------------->2^k eq(3)
This implies that maximum no of recursive calls at any level will be at most 2^n.
And for all the recursive calls in equation 3 is ϴ(1) so time complexity will be 2^n* ϴ(1)=2^n