I need two overlay two datasets with different Y-axis scales in Matplotlib. The data contains both positive and negative values. I want the two axes to share one origin, but
The other answers here seem overly complicated and don't necessarily work for all the scenarios (e.g. ax1 is all negative and ax2 is all positive). There are 2 easy methods that always work:
def align_yaxis(ax1, ax2):
y_lims = numpy.array([ax.get_ylim() for ax in [ax1, ax2]])
# force 0 to appear on both axes, comment if don't need
y_lims[:, 0] = y_lims[:, 0].clip(None, 0)
y_lims[:, 1] = y_lims[:, 1].clip(0, None)
# normalize both axes
y_mags = (y_lims[:,1] - y_lims[:,0]).reshape(len(y_lims),1)
y_lims_normalized = y_lims / y_mags
# find combined range
y_new_lims_normalized = numpy.array([numpy.min(y_lims_normalized), numpy.max(y_lims_normalized)])
# denormalize combined range to get new axes
new_lim1, new_lim2 = y_new_lims_normalized * y_mags
ax1.set_ylim(new_lim1)
ax2.set_ylim(new_lim2)