How to convert a .wav file to a spectrogram in python3

前端 未结 4 1784
-上瘾入骨i
-上瘾入骨i 2020-11-29 03:18

I am trying to create a spectrogram from a .wav file in python3.

I want the final saved image to look similar to this image:

I have tried the foll

4条回答
  •  一整个雨季
    2020-11-29 03:39

    I have fixed the errors you are facing for http://www.frank-zalkow.de/en/code-snippets/create-audio-spectrograms-with-python.html
    This implementation is better because you can change the binsize (e.g. binsize=2**8)

    import numpy as np
    from matplotlib import pyplot as plt
    import scipy.io.wavfile as wav
    from numpy.lib import stride_tricks
    
    """ short time fourier transform of audio signal """
    def stft(sig, frameSize, overlapFac=0.5, window=np.hanning):
        win = window(frameSize)
        hopSize = int(frameSize - np.floor(overlapFac * frameSize))
    
        # zeros at beginning (thus center of 1st window should be for sample nr. 0)   
        samples = np.append(np.zeros(int(np.floor(frameSize/2.0))), sig)    
        # cols for windowing
        cols = np.ceil( (len(samples) - frameSize) / float(hopSize)) + 1
        # zeros at end (thus samples can be fully covered by frames)
        samples = np.append(samples, np.zeros(frameSize))
    
        frames = stride_tricks.as_strided(samples, shape=(int(cols), frameSize), strides=(samples.strides[0]*hopSize, samples.strides[0])).copy()
        frames *= win
    
        return np.fft.rfft(frames)    
    
    """ scale frequency axis logarithmically """    
    def logscale_spec(spec, sr=44100, factor=20.):
        timebins, freqbins = np.shape(spec)
    
        scale = np.linspace(0, 1, freqbins) ** factor
        scale *= (freqbins-1)/max(scale)
        scale = np.unique(np.round(scale))
    
        # create spectrogram with new freq bins
        newspec = np.complex128(np.zeros([timebins, len(scale)]))
        for i in range(0, len(scale)):        
            if i == len(scale)-1:
                newspec[:,i] = np.sum(spec[:,int(scale[i]):], axis=1)
            else:        
                newspec[:,i] = np.sum(spec[:,int(scale[i]):int(scale[i+1])], axis=1)
    
        # list center freq of bins
        allfreqs = np.abs(np.fft.fftfreq(freqbins*2, 1./sr)[:freqbins+1])
        freqs = []
        for i in range(0, len(scale)):
            if i == len(scale)-1:
                freqs += [np.mean(allfreqs[int(scale[i]):])]
            else:
                freqs += [np.mean(allfreqs[int(scale[i]):int(scale[i+1])])]
    
        return newspec, freqs
    
    """ plot spectrogram"""
    def plotstft(audiopath, binsize=2**10, plotpath=None, colormap="jet"):
        samplerate, samples = wav.read(audiopath)
    
        s = stft(samples, binsize)
    
        sshow, freq = logscale_spec(s, factor=1.0, sr=samplerate)
    
        ims = 20.*np.log10(np.abs(sshow)/10e-6) # amplitude to decibel
    
        timebins, freqbins = np.shape(ims)
    
        print("timebins: ", timebins)
        print("freqbins: ", freqbins)
    
        plt.figure(figsize=(15, 7.5))
        plt.imshow(np.transpose(ims), origin="lower", aspect="auto", cmap=colormap, interpolation="none")
        plt.colorbar()
    
        plt.xlabel("time (s)")
        plt.ylabel("frequency (hz)")
        plt.xlim([0, timebins-1])
        plt.ylim([0, freqbins])
    
        xlocs = np.float32(np.linspace(0, timebins-1, 5))
        plt.xticks(xlocs, ["%.02f" % l for l in ((xlocs*len(samples)/timebins)+(0.5*binsize))/samplerate])
        ylocs = np.int16(np.round(np.linspace(0, freqbins-1, 10)))
        plt.yticks(ylocs, ["%.02f" % freq[i] for i in ylocs])
    
        if plotpath:
            plt.savefig(plotpath, bbox_inches="tight")
        else:
            plt.show()
    
        plt.clf()
    
        return ims
    
    ims = plotstft(filepath)
    

提交回复
热议问题