I am working on a project that requires the manipulation of enormous matrices, specifically pyramidal summation for a copula calculation.
In short, I need to keep
For C++, a map works well. Several million objects won't be a problem. 10 million items took about 4.4 seconds and about 57 meg on my computer.
My test application is as follows:
#include
#include
#include
Now to dynamically choose the number of variables, the easiest solution is to represent index as a string, and then use string as a key for the map. For instance, an item located at [23][55] can be represented via "23,55" string. We can also extend this solution for higher dimensions; such as for three dimensions an arbitrary index will look like "34,45,56". A simple implementation of this technique is as follows:
std::map data data;
char ix[100];
sprintf(ix, "%d,%d", x, y); // 2 vars
data[ix] = i;
sprintf(ix, "%d,%d,%d", x, y, z); // 3 vars
data[ix] = i;