I was wondering if there is an elegant and shorthand way in Pandas DataFrames to select columns by data type (dtype). i.e. Select only int64 columns from a DataFrame.
<
I'd like to extend existing answer by adding options for selecting all floating dtypes or all integer dtypes:
Demo:
np.random.seed(1234)
df = pd.DataFrame({
'a':np.random.rand(3),
'b':np.random.rand(3).astype('float32'),
'c':np.random.randint(10,size=(3)).astype('int16'),
'd':np.arange(3).astype('int32'),
'e':np.random.randint(10**7,size=(3)).astype('int64'),
'f':np.random.choice([True, False], 3),
'g':pd.date_range('2000-01-01', periods=3)
})
yields:
In [2]: df
Out[2]:
a b c d e f g
0 0.191519 0.785359 6 0 7578569 False 2000-01-01
1 0.622109 0.779976 8 1 7981439 True 2000-01-02
2 0.437728 0.272593 0 2 2558462 True 2000-01-03
In [3]: df.dtypes
Out[3]:
a float64
b float32
c int16
d int32
e int64
f bool
g datetime64[ns]
dtype: object
Selecting all floating number columns:
In [4]: df.select_dtypes(include=['floating'])
Out[4]:
a b
0 0.191519 0.785359
1 0.622109 0.779976
2 0.437728 0.272593
In [5]: df.select_dtypes(include=['floating']).dtypes
Out[5]:
a float64
b float32
dtype: object
Selecting all integer number columns:
In [6]: df.select_dtypes(include=['integer'])
Out[6]:
c d e
0 6 0 7578569
1 8 1 7981439
2 0 2 2558462
In [7]: df.select_dtypes(include=['integer']).dtypes
Out[7]:
c int16
d int32
e int64
dtype: object
Selecting all numeric columns:
In [8]: df.select_dtypes(include=['number'])
Out[8]:
a b c d e
0 0.191519 0.785359 6 0 7578569
1 0.622109 0.779976 8 1 7981439
2 0.437728 0.272593 0 2 2558462
In [9]: df.select_dtypes(include=['number']).dtypes
Out[9]:
a float64
b float32
c int16
d int32
e int64
dtype: object