I\'m relatively new to the world of TensorFlow, and pretty perplexed by how you\'d actually read CSV data into a usable example/label tensors in Te
If anyone came here searching for a simple way to read absolutely large and sharded CSV files in tf.estimator API then , please see below my code
CSV_COLUMNS = ['ID','text','class']
LABEL_COLUMN = 'class'
DEFAULTS = [['x'],['no'],[0]] #Default values
def read_dataset(filename, mode, batch_size = 512):
def _input_fn(v_test=False):
# def decode_csv(value_column):
# columns = tf.decode_csv(value_column, record_defaults = DEFAULTS)
# features = dict(zip(CSV_COLUMNS, columns))
# label = features.pop(LABEL_COLUMN)
# return add_engineered(features), label
# Create list of files that match pattern
file_list = tf.gfile.Glob(filename)
# Create dataset from file list
#dataset = tf.data.TextLineDataset(file_list).map(decode_csv)
dataset = tf.contrib.data.make_csv_dataset(file_list,
batch_size=batch_size,
column_names=CSV_COLUMNS,
column_defaults=DEFAULTS,
label_name=LABEL_COLUMN)
if mode == tf.estimator.ModeKeys.TRAIN:
num_epochs = None # indefinitely
dataset = dataset.shuffle(buffer_size = 10 * batch_size)
else:
num_epochs = 1 # end-of-input after this
batch_features, batch_labels = dataset.make_one_shot_iterator().get_next()
#Begins - Uncomment for testing only -----------------------------------------------------<
if v_test == True:
with tf.Session() as sess:
print(sess.run(batch_features))
#End - Uncomment for testing only -----------------------------------------------------<
return add_engineered(batch_features), batch_labels
return _input_fn
Example usage in TF.estimator:
train_spec = tf.estimator.TrainSpec(input_fn = read_dataset(
filename = train_file,
mode = tf.estimator.ModeKeys.TRAIN,
batch_size = 128),
max_steps = num_train_steps)