Okay, this all takes place in a nice and simple 2D world... :)
Suppose I have a static object A at position Apos, and a linearly moving object B at Bpos with bVeloci
Jeffrey Hantin has a nice solution for this problem, though his derivation is overly complicated. Here's a cleaner way of deriving it with some of the resultant code at the bottom.
I'll be using x.y to represent vector dot product, and if a vector quantity is squared, it means I am dotting it with itself.
origpos = initial position of shooter
origvel = initial velocity of shooter
targpos = initial position of target
targvel = initial velocity of target
projvel = velocity of the projectile relative to the origin (cause ur shooting from there)
speed = the magnitude of projvel
t = time
We know that the position of the projectile and target with respect to t time can be described with some equations.
curprojpos(t) = origpos + t*origvel + t*projvel
curtargpos(t) = targpos + t*targvel
We want these to be equal to each other at some point (the point of intersection), so let's set them equal to each other and solve for the free variable, projvel.
origpos + t*origvel + t*projvel = targpos + t*targvel
turns into ->
projvel = (targpos - origpos)/t + targvel - origvel
Let's forget about the notion of origin and target position/velocity. Instead, let's work in relative terms since motion of one thing is relative to another. In this case, what we now have is relpos = targetpos - originpos and relvel = targetvel - originvel
projvel = relpos/t + relvel
We don't know what projvel is, but we do know that we want projvel.projvel to be equal to speed^2, so we'll square both sides and we get
projvel^2 = (relpos/t + relvel)^2
expands into ->
speed^2 = relvel.relvel + 2*relpos.relvel/t + relpos.relpos/t^2
We can now see that the only free variable is time, t, and then we'll use t to solve for projvel. We'll solve for t with the quadratic formula. First separate it out into a, b and c, then solve for the roots.
Before solving, though, remember that we want the best solution where t is smallest, but we need to make sure that t is not negative (you can't hit something in the past)
a = relvel.relvel - speed^2
b = 2*relpos.relvel
c = relpos.relpos
h = -b/(2*a)
k2 = h*h - c/a
if k2 < 0, then there are no roots and there is no solution
if k2 = 0, then there is one root at h
if 0 < h then t = h
else, no solution
if k2 > 0, then there are two roots at h - k and h + k, we also know r0 is less than r1.
k = sqrt(k2)
r0 = h - k
r1 = h + k
we have the roots, we must now solve for the smallest positive one
if 0
Now, if we have a t value, we can plug t back into the original equation and solve for the projvel
projvel = relpos/t + relvel
Now, to the shoot the projectile, the resultant global position and velocity for the projectile is
globalpos = origpos
globalvel = origvel + projvel
And you're done!
My implementation of my solution in Lua, where vec*vec represents vector dot product:
local function lineartrajectory(origpos,origvel,speed,targpos,targvel)
local relpos=targpos-origpos
local relvel=targvel-origvel
local a=relvel*relvel-speed*speed
local b=2*relpos*relvel
local c=relpos*relpos
if a*a<1e-32 then--code translation for a==0
if b*b<1e-32 then
return false,"no solution"
else
local h=-c/b
if 0