I want to create a very large array on which I write \'0\'s and \'1\'s. I\'m trying to simulate a physical process called random sequential adsorption, where units of length
typedef unsigned long bfield_t[ size_needed/sizeof(long) ];
// long because that's probably what your cpu is best at
// The size_needed should be evenly divisable by sizeof(long) or
// you could (sizeof(long)-1+size_needed)/sizeof(long) to force it to round up
Now, each long in a bfield_t can hold sizeof(long)*8 bits.
You can calculate the index of a needed big by:
bindex = index / (8 * sizeof(long) );
and your bit number by
b = index % (8 * sizeof(long) );
You can then look up the long you need and then mask out the bit you need from it.
result = my_field[bindex] & (1<
or
result = 1 & (my_field[bindex]>>b); // if you prefer them to be in bit0
The first one may be faster on some cpus or may save you shifting back up of you need to perform operations between the same bit in multiple bit arrays. It also mirrors the setting and clearing of a bit in the field more closely than the second implemention. set:
my_field[bindex] |= 1<
clear:
my_field[bindex] &= ~(1<
You should remember that you can use bitwise operations on the longs that hold the fields and that's the same as the operations on the individual bits.
You'll probably also want to look into the ffs, fls, ffc, and flc functions if available. ffs should always be avaiable in strings.h
. It's there just for this purpose -- a string of bits.
Anyway, it is find first set and essentially:
int ffs(int x) {
int c = 0;
while (!(x&1) ) {
c++;
x>>=1;
}
return c; // except that it handles x = 0 differently
}
This is a common operation for processors to have an instruction for and your compiler will probably generate that instruction rather than calling a function like the one I wrote. x86 has an instruction for this, by the way. Oh, and ffsl and ffsll are the same function except take long and long long, respectively.