I\'m using Python and Numpy to calculate a best fit polynomial of arbitrary degree. I pass a list of x values, y values, and the degree of the polynomial I want to fit (lin
From scipy.stats.linregress source. They use the average sum of squares method.
import numpy as np
x = np.array(x)
y = np.array(y)
# average sum of squares:
ssxm, ssxym, ssyxm, ssym = np.cov(x, y, bias=1).flat
r_num = ssxym
r_den = np.sqrt(ssxm * ssym)
r = r_num / r_den
if r_den == 0.0:
r = 0.0
else:
r = r_num / r_den
if r > 1.0:
r = 1.0
elif r < -1.0:
r = -1.0