I am using in my code at the moment a ReentrantReadWriteLock to synchronize access over a tree-like structure. This structure is large, and read by many threads at once wit
Found in the documentation for ReentrantReadWriteLock. It clearly says, that reader threads will never succeed when trying to acquire a write lock. What you try to achieve is simply not supported. You must release the read lock before acquisition of the write lock. A downgrade is still possible.
Reentrancy
This lock allows both readers and writers to reacquire read or write locks in the style of a {@link ReentrantLock}. Non-reentrant readers are not allowed until all write locks held by the writing thread have been released.
Additionally, a writer can acquire the read lock, but not vice-versa. Among other applications, reentrancy can be useful when write locks are held during calls or callbacks to methods that perform reads under read locks. If a reader tries to acquire the write lock it will never succeed.
Sample usage from the above source:
class CachedData {
Object data;
volatile boolean cacheValid;
ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
void processCachedData() {
rwl.readLock().lock();
if (!cacheValid) {
// Must release read lock before acquiring write lock
rwl.readLock().unlock();
rwl.writeLock().lock();
// Recheck state because another thread might have acquired
// write lock and changed state before we did.
if (!cacheValid) {
data = ...
cacheValid = true;
}
// Downgrade by acquiring read lock before releasing write lock
rwl.readLock().lock();
rwl.writeLock().unlock(); // Unlock write, still hold read
}
use(data);
rwl.readLock().unlock();
}
}