I would like to create a block tridiagonal matrix starting from three numpy.ndarray. Is there any (direct) way to do that in python?
Thank you in advance!
Ch
You can also do this with "regular" numpy arrays through fancy indexing:
import numpy as np
data = np.zeros((10,10))
data[np.arange(5), np.arange(5)+2] = [5, 6, 7, 8, 9]
data[np.arange(3)+4, np.arange(3)] = [1, 2, 3]
print data
(You could replace those calls to np.arange
with np.r_
if you wanted to be more concise. E.g. instead of data[np.arange(3)+4, np.arange(3)]
, use data[np.r_[:3]+4, np.r_[:3]]
)
This yields:
[[0 0 5 0 0 0 0 0 0 0]
[0 0 0 6 0 0 0 0 0 0]
[0 0 0 0 7 0 0 0 0 0]
[0 0 0 0 0 8 0 0 0 0]
[1 0 0 0 0 0 9 0 0 0]
[0 2 0 0 0 0 0 0 0 0]
[0 0 3 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0]]
However, if you're going to be using sparse matrices anyway, have a look at scipy.sparse.spdiags. (Note that you'll need to prepend fake data onto your row values if you're placing data into a diagonal position with a positive value (e.g. the 3's in position 4 in the example))
As a quick example:
import numpy as np
import scipy as sp
import scipy.sparse
diag_rows = np.array([[1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 2],
[0, 0, 0, 0, 3, 3, 3]])
positions = [-3, 0, 4]
print sp.sparse.spdiags(diag_rows, positions, 10, 10).todense()
This yields:
[[2 0 0 0 3 0 0 0 0 0]
[0 2 0 0 0 3 0 0 0 0]
[0 0 2 0 0 0 3 0 0 0]
[1 0 0 2 0 0 0 0 0 0]
[0 1 0 0 2 0 0 0 0 0]
[0 0 1 0 0 2 0 0 0 0]
[0 0 0 1 0 0 2 0 0 0]
[0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0]]