Numpy Pure Functions for performance, caching

后端 未结 4 1038
悲哀的现实
悲哀的现实 2020-11-28 14:06

I\'m writing some moderately performance critical code in numpy. This code will be in the inner most loop, of a computation that\'s run time is measured in hours. A quick ca

4条回答
  •  醉酒成梦
    2020-11-28 14:13

    These functions already exist in scipy. The sigmoid function is available as scipy.special.expit.

    In [36]: from scipy.special import expit
    

    Compare expit to the vectorized sigmoid function:

    In [38]: x = np.linspace(-6, 6, 1001)
    
    In [39]: %timeit y = sigmoid(x)
    100 loops, best of 3: 2.4 ms per loop
    
    In [40]: %timeit y = expit(x)
    10000 loops, best of 3: 20.6 µs per loop
    

    expit is also faster than implementing the formula yourself:

    In [41]: %timeit y = 1.0 / (1.0 + np.exp(-x))
    10000 loops, best of 3: 27 µs per loop
    

    The CDF of the logistic distribution is the sigmoid function. It is available as the cdf method of scipy.stats.logistic, but cdf eventually calls expit, so there is no point in using that method. You can use the pdf method to compute the derivative of the sigmoid function, or the _pdf method which has less overhead, but "rolling your own" is faster:

    In [44]: def sigmoid_grad(x):
       ....:     ex = np.exp(-x)
       ....:     y = ex / (1 + ex)**2
       ....:     return y
    

    Timing (x has length 1001):

    In [45]: from scipy.stats import logistic
    
    In [46]: %timeit y = logistic._pdf(x)
    10000 loops, best of 3: 73.8 µs per loop
    
    In [47]: %timeit y = sigmoid_grad(x)
    10000 loops, best of 3: 29.7 µs per loop
    

    Be careful with your implementation if you are going to use values that are far into the tails. The exponential function can overflow pretty easily. logistic._cdf is a bit more robust than my quick implementation of sigmoid_grad:

    In [60]: sigmoid_grad(-500)
    /home/warren/anaconda/bin/ipython:3: RuntimeWarning: overflow encountered in double_scalars
      import sys
    Out[60]: 0.0
    
    In [61]: logistic._pdf(-500)
    Out[61]: 7.1245764067412855e-218
    

    An implementation using sech**2 (1/cosh**2) is a bit slower than the above sigmoid_grad:

    In [101]: def sigmoid_grad_sech2(x):
       .....:     y = (0.5 / np.cosh(0.5*x))**2
       .....:     return y
       .....: 
    
    In [102]: %timeit y = sigmoid_grad_sech2(x)
    10000 loops, best of 3: 34 µs per loop
    

    But it handles the tails better:

    In [103]: sigmoid_grad_sech2(-500)
    Out[103]: 7.1245764067412855e-218
    
    In [104]: sigmoid_grad_sech2(500)
    Out[104]: 7.1245764067412855e-218
    

提交回复
热议问题