How can I use apply
or a related function to create a new data frame that contains the results of the row averages of each pair of columns in a very large data
A similar question was asked here by @david: averaging every 16 columns in r (now closed), which I answered by adapting @TylerRinker's answer above, following a suggestion by @joran and @Ben. Because the resulting function might be of help to OP or future readers, I am copying that function here, along with an example for OP's data.
# Function to apply 'fun' to object 'x' over every 'by' columns
# Alternatively, 'by' may be a vector of groups
byapply <- function(x, by, fun, ...)
{
# Create index list
if (length(by) == 1)
{
nc <- ncol(x)
split.index <- rep(1:ceiling(nc / by), each = by, length.out = nc)
} else # 'by' is a vector of groups
{
nc <- length(by)
split.index <- by
}
index.list <- split(seq(from = 1, to = nc), split.index)
# Pass index list to fun using sapply() and return object
sapply(index.list, function(i)
{
do.call(fun, list(x[, i], ...))
})
}
Then, to find the mean of the replicates:
byapply(dat, 3, rowMeans)
Or, perhaps the standard deviation of the replicates:
byapply(dat, 3, apply, 1, sd)
Update
by
can also be specified as a vector of groups:
byapply(dat, c(1,1,1,2,2,2), rowMeans)