I\'ve got a dataframe with the following information:
filename val1 val2
t
1 file1.csv 5 10
2 file1.csv NaN Na
I ran into this as well. Instead of using apply, you can use transform, which will reduce your run time by more than 25% if you have on the order of 1000 groups:
import numpy as np
import pandas as pd
np.random.seed(500)
test_df = pd.DataFrame({
'a': np.random.randint(low=0, high=1000, size=10000),
'b': np.random.choice([1, 2, 4, 7, np.nan], size=10000, p=([0.2475]*4 + [0.01]))
})
Tests:
%timeit test_df.groupby('a').transform(pd.DataFrame.interpolate)
Output: 566 ms ± 27.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit test_df.groupby('a').apply(pd.DataFrame.interpolate)
Output: 788 ms ± 10.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit test_df.groupby('a').apply(lambda group: group.interpolate())
Output: 787 ms ± 17.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit test_df.interpolate()
Output: 918 µs ± 16.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
You will still see a significant increase in run-time compared to a fully vectorized call to interpolate on the full DataFrame, but I don't think you can do much better in pandas.