I cannot find a pandas function (which I had seen before) to substitute the NaN\'s in a dataframe with values from another dataframe (assuming a common index which can be sp
A dedicated method for this is DataFrame.update:
Quoted from the documentation:
Modify in place using non-NA values from another DataFrame.
Aligns on indices. There is no return value.
Important to note is that this method will modify your data inplace. So it will overwrite your updated dataframe.
Example:
print(df1)
A B C
aaa NaN 1.0 NaN
bbb NaN NaN 10.0
ccc 3.0 NaN 6.0
ffffd NaN NaN NaN
eee NaN NaN NaN
print(df2)
A B C
index
aaa 1.0 1.0 NaN
bbb NaN NaN 10.0
eee NaN 1.0 NaN
# update df1 NaN where there are values in df2
df1.update(df2)
print(df1)
A B C
aaa 1.0 1.0 NaN
bbb NaN NaN 10.0
ccc 3.0 NaN 6.0
ffffd NaN NaN NaN
eee NaN 1.0 NaN
Notice the updated NaN
values at intersect aaa, A
and eee, B