Suppose I have an AxBxC matrix X and a BxD matrix Y.
Is there a non-loop method by which I can multiply
To answer the question, and for readability, please see:
nT = 100;
t = 2*pi*linspace (0,1,nT)’;
# 2 experiments measuring 3 signals at nT timestamps
signals = zeros(nT,3,2);
signals(:,:,1) = [sin(2*t) cos(2*t) sin(4*t).^2];
signals(:,:,2) = [sin(2*t+pi/4) cos(2*t+pi/4) sin(4*t+pi/6).^2];
sT(:,:,1) = signals(:,:,1)’;
sT(:,:,2) = signals(:,:,2)’;
G = ndmult (signals,sT,[1 2]);
Original source. I added inline comments.
function M = ndmult (A,B,dim)
dA = dim(1);
dB = dim(2);
# reshape A into 2d
sA = size (A);
nA = length (sA);
perA = [1:(dA-1) (dA+1):(nA-1) nA dA](1:nA);
Ap = permute (A, perA);
Ap = reshape (Ap, prod (sA(perA(1:end-1))), sA(perA(end)));
# reshape B into 2d
sB = size (B);
nB = length (sB);
perB = [dB 1:(dB-1) (dB+1):(nB-1) nB](1:nB);
Bp = permute (B, perB);
Bp = reshape (Bp, sB(perB(1)), prod (sB(perB(2:end))));
# multiply
M = Ap * Bp;
# reshape back to original format
s = [sA(perA(1:end-1)) sB(perB(2:end))];
M = squeeze (reshape (M, s));
endfunction