Say I am given data as follows:
x = [1, 2.5, 3.4, 5.8, 6]
y = [2, 4, 5.8, 4.3, 4]
I want to design a function that will interpolate linearl
Building on Lauritz` answer, here's a version with the following changes
__call__ instead of __getitem__from bisect import bisect_right
class Interpolate:
def __init__(self, x_list, y_list):
if any(y - x <= 0 for x, y in zip(x_list, x_list[1:])):
raise ValueError("x_list must be in strictly ascending order!")
self.x_list = x_list
self.y_list = y_list
intervals = zip(x_list, x_list[1:], y_list, y_list[1:])
self.slopes = [(y2 - y1) / (x2 - x1) for x1, x2, y1, y2 in intervals]
def __call__(self, x):
if not (self.x_list[0] <= x <= self.x_list[-1]):
raise ValueError("x out of bounds!")
if x == self.x_list[-1]:
return self.y_list[-1]
i = bisect_right(self.x_list, x) - 1
return self.y_list[i] + self.slopes[i] * (x - self.x_list[i])
Example usage:
>>> interp = Interpolate([1, 2.5, 3.4, 5.8, 6], [2, 4, 5.8, 4.3, 4])
>>> interp(4)
5.425