How can I apply mask to a color image in latest python binding (cv2)? In previous python binding the simplest way was to use cv.Copy e.g.
cv.Copy(
The other methods described assume a binary mask. If you want to use a real-valued single-channel grayscale image as a mask (e.g. from an alpha channel), you can expand it to three channels and then use it for interpolation:
assert len(mask.shape) == 2 and issubclass(mask.dtype.type, np.floating)
assert len(foreground_rgb.shape) == 3
assert len(background_rgb.shape) == 3
alpha3 = np.stack([mask]*3, axis=2)
blended = alpha3 * foreground_rgb + (1. - alpha3) * background_rgb
Note that mask needs to be in range 0..1 for the operation to succeed. It is also assumed that 1.0 encodes keeping the foreground only, while 0.0 means keeping only the background.
If the mask may have the shape (h, w, 1), this helps:
alpha3 = np.squeeze(np.stack([np.atleast_3d(mask)]*3, axis=2))
Here np.atleast_3d(mask) makes the mask (h, w, 1) if it is (h, w) and np.squeeze(...) reshapes the result from (h, w, 3, 1) to (h, w, 3).