The random module (http://docs.python.org/2/library/random.html) has several fixed functions to randomly sample from. For example random.gauss
Here is a rather nice way of performing inverse transform sampling with a decorator.
import numpy as np
from scipy.interpolate import interp1d
def inverse_sample_decorator(dist):
def wrapper(pnts, x_min=-100, x_max=100, n=1e5, **kwargs):
x = np.linspace(x_min, x_max, int(n))
cumulative = np.cumsum(dist(x, **kwargs))
cumulative -= cumulative.min()
f = interp1d(cumulative/cumulative.max(), x)
return f(np.random.random(pnts))
return wrapper
Using this decorator on a Gaussian distribution, for example:
@inverse_sample_decorator
def gauss(x, amp=1.0, mean=0.0, std=0.2):
return amp*np.exp(-(x-mean)**2/std**2/2.0)
You can then generate sample points from the distribution by calling the function. The keyword arguments x_min and x_max are the limits of the original distribution and can be passed as arguments to gauss along with the other key word arguments that parameterise the distribution.
samples = gauss(5000, mean=20, std=0.8, x_min=19, x_max=21)
Alternatively, this can be done as a function that takes the distribution as an argument (as in your original question),
def inverse_sample_function(dist, pnts, x_min=-100, x_max=100, n=1e5,
**kwargs):
x = np.linspace(x_min, x_max, int(n))
cumulative = np.cumsum(dist(x, **kwargs))
cumulative -= cumulative.min()
f = interp1d(cumulative/cumulative.max(), x)
return f(np.random.random(pnts))