I am trying to use ggplot2 to create a performance chart with a log normal y scale. Unfortunately I\'m not able to produce nice ticks as for the base plot function.
This function allows to specify both the desired number of major and minor ticks. It must be specified twice for that effect:
#' log scale
#'
#' Creates a function which returns ticks for a given data range. It uses some
#' code from scales::log_breaks, but in contrast to that function it not only
#' the exponentials of the base b, but log minor ticks (f*b^i, where f and i are
#' integers), too.
#'
#' @param n Approximate number of ticks to produce
#' @param base Logarithm base
#'
#' @return
#'
#' A function which expects one parameter:
#'
#' * **x**: (numeric vector) The data for which to create a set of ticks.
#'
#' @export
logTicks <- function(n = 5, base = 10){
# Divisors of the logarithm base. E.g. for base 10: 1, 2, 5, 10.
divisors <- which((base / seq_len(base)) %% 1 == 0)
mkTcks <- function(min, max, base, divisor){
f <- seq(divisor, base, by = divisor)
return(unique(c(base^min, as.vector(outer(f, base^(min:max), `*`)))))
}
function(x) {
rng <- range(x, na.rm = TRUE)
lrng <- log(rng, base = base)
min <- floor(lrng[1])
max <- ceiling(lrng[2])
tck <- function(divisor){
t <- mkTcks(min, max, base, divisor)
t[t >= rng[1] & t <= rng[2]]
}
# For all possible divisors, produce a set of ticks and count how many ticks
# result
tcks <- lapply(divisors, function(d) tck(d))
l <- vapply(tcks, length, numeric(1))
# Take the set of ticks which is nearest to the desired number of ticks
i <- which.min(abs(n - l))
if(l[i] < 2){
# The data range is too small to show more than 1 logarithm tick, fall
# back to linear interpolation
ticks <- pretty(x, n = n, min.n = 2)
}else{
ticks <- tcks[[i]]
}
return(ticks)
}
}
Your example:
library(ggplot2)
library(scales)
# fix RNG
set.seed(seed=1)
# simulate returns
y=rnorm(999,0.02,0.2)
# M$Y are the cummulative returns (like an index)
M=data.frame(X=1:1000,Y=100)
for (i in 2:1000)
M[i,"Y"]=M[i-1,"Y"]*(1+y[i-1])
ggplot(M,aes(x=X,y=Y))+geom_line()+
scale_y_log10(breaks = logTicks(n = 4), minor_breaks = logTicks(n = 40))