I have a dataframe df :
20060930 10.103 NaN 10.103 7.981
20061231 15.915 NaN 15.915 12.686
20070331 3.196 NaN
For large datasets, it is memory efficient to read only selected rows via the skiprows parameter.
Example
pred = lambda x: x not in [1, 3]
pd.read_csv("data.csv", skiprows=pred, index_col=0, names=...)
This will now return a DataFrame from a file that skips all rows except 1 and 3.
Details
From the docs:
skiprows: list-like or integer or callable, defaultNone...
If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid callable argument would be
lambda x: x in [0, 2]
This feature works in version pandas 0.20.0+. See also the corresponding issue and a related post.