I thought this problem had a trivial solution, couple of for loops and some fancy counters, but apparently it is rather more complicated.
So my question is, how woul
Let's take a look how matrix elements are indexed.
(0,0) (0,1) (0,2) (0,3) (0,4)
(1,0) (1,1) (1,2) (1,3) (1,4)
(2,0) (2,1) (2,2) (2,3) (2,4)
Now, let's take a look at the stripes:
Stripe 1: (0,0)
Stripe 2: (0,1) (1,0)
Stripe 3: (0,2) (1,1) (2,0)
Stripe 4: (0,3) (1,2) (2,1)
Stripe 5: (0,4) (1,3) (2,2)
Stripe 6: (1,4) (2,3)
Stripe 7: (2,4)
If you take a closer look, you'll notice one thing. The sum of indexes of each matrix element in each stripe is constant. So, here's the code that does this.
public static void printSecondaryDiagonalOrder(int[][] matrix) {
int rows = matrix.length;
int cols = matrix[0].length;
int maxSum = rows + cols - 2;
for (int sum = 0; sum <= maxSum; sum++) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
if (i + j - sum == 0) {
System.out.print(matrix[i][j] + "\t");
}
}
}
System.out.println();
}
}
It's not the fastest algorithm out there (does(rows * cols * (rows+cols-2)) operations), but the logic behind it is quite simple.