I have a multi output(200) binary classification model which I wrote in keras.
In this model I want to add additional metrics such as ROC and AUC but to my knowledg
Set your model architecture with tf.keras.metrics.AUC(): Read following Keras Blog: Keras Page
def model_architecture_ann(in_dim,lr=0.0001):
model = Sequential()
model.add(Dense(512, input_dim=X_train_filtered.shape[1], activation='relu'))
model.add(Dense(1, activation='sigmoid'))
opt = keras.optimizers.SGD(learning_rate=0.001)
auc=tf.keras.metrics.AUC()
model.compile(loss='binary_crossentropy', optimizer=opt, metrics=[tf.keras.metrics.AUC(name='auc')])
model.summary()
return model