Function pointers, Closures, and Lambda

前端 未结 12 1451
臣服心动
臣服心动 2020-11-28 01:51

I am just now learning about function pointers and, as I was reading the K&R chapter on the subject, the first thing that hit me was, \"Hey, this is kinda like a closure

12条回答
  •  予麋鹿
    予麋鹿 (楼主)
    2020-11-28 02:31

    In C, function pointers can be passed as arguments to functions and returned as values from functions, but functions exist only at top level: you cannot nest function definitions within each other. Think about what it would take for C to support nested functions that can access the variables of the outer function, while still being able to send function pointers up and down the call stack. (To follow this explanation, you should know the basics of how function calls are implemented in C and most similar languages: browse through the call stack entry on Wikipedia.)

    What kind of object is a pointer to a nested function? It cannot just be the address of the code, because if you call it, how does it access the variables of the outer function? (Remember that because of recursion, there may be several different calls of the outer function active at one time.) This is called the funarg problem, and there are two subproblems: the downward funargs problem and the upwards funargs problem.

    The downwards funargs problem, i.e., sending a function pointer "down the stack" as an argument to a function you call, is actually not incompatible with C, and GCC supports nested functions as downward funargs. In GCC, when you create a pointer to a nested function, you really get a pointer to a trampoline, a dynamically constructed piece of code that sets up the static link pointer and then calls the real function, which uses the static link pointer to access the variables of the outer function.

    The upwards funargs problem is more difficult. GCC does not prevent you from letting a trampoline pointer exist after the outer function is no longer active (has no record on the call stack), and then the static link pointer could point to garbage. Activation records can no longer be allocated on a stack. The usual solution is to allocate them on the heap, and let a function object representing a nested function just point to the activation record of the outer function. Such an object is called a closure. Then the language will typically have to support garbage collection so that the records can be freed once there are no more pointers pointing to them.

    Lambdas (anonymous functions) are really a separate issue, but usually a language that lets you define anonymous functions on the fly will also let you return them as function values, so they end up being closures.

提交回复
热议问题