I saw this question on Reddit, and there were no positive solutions presented, and I thought it would be a perfect question to ask here. This was in a thread about interview
(to facilitate testing)
Counter-example (for C version): {8, 33, 27, 30, 9, 2, 35, 7, 26, 32, 2, 23, 0, 13, 1, 6, 31, 3, 28, 4, 5, 18, 12, 2, 9, 14, 17, 21, 19, 22, 15, 20, 24, 11, 10, 16, 25}. Here n=0, m=35. This sequence misses 34 and has two 2.
It is an O(m) in time and O(1) in space solution.
Out-of-range values are easily detected in O(n) in time and O(1) in space, therefore tests are concentrated on in-range (means all values are in the valid range [n, n+m)) sequences. Otherwise {1, 34} is a counter example (for C version, sizeof(int)==4, standard binary representation of numbers).
The main difference between C and Ruby version:
<< operator will rotate values in C due to a finite sizeof(int),
but in Ruby numbers will grow to accomodate the result e.g.,
Ruby: 1 << 100 # -> 1267650600228229401496703205376
C: int n = 100; 1 << n // -> 16
In Ruby: check_index ^= 1 << i; is equivalent to check_index.setbit(i). The same effect could be implemented in C++: vector
bool isperm_fredric(int m; int a[m], int m, int n)
{
/**
O(m) in time (single pass), O(1) in space,
no restriction on n,
?overflow?
a[] may be readonly
*/
int check_index = 0;
int check_value = 0;
int min = a[0];
for (int i = 0; i < m; ++i) {
check_index ^= 1 << i;
check_value ^= 1 << (a[i] - n); //
if (a[i] < min)
min = a[i];
}
check_index <<= min - n; // min and n may differ e.g.,
// {1, 1}: min=1, but n may be 0.
return check_index == check_value;
}
Values of the above function were tested against the following code:
bool *seen_isperm_trusted = NULL;
bool isperm_trusted(int m; int a[m], int m, int n)
{
/** O(m) in time, O(m) in space */
for (int i = 0; i < m; ++i) // could be memset(s_i_t, 0, m*sizeof(*s_i_t));
seen_isperm_trusted[i] = false;
for (int i = 0; i < m; ++i) {
if (a[i] < n or a[i] >= n + m)
return false; // out of range
if (seen_isperm_trusted[a[i]-n])
return false; // duplicates
else
seen_isperm_trusted[a[i]-n] = true;
}
return true; // a[] is a permutation of the range: [n, n+m)
}
Input arrays are generated with:
void backtrack(int m; int a[m], int m, int nitems)
{
/** generate all permutations with repetition for the range [0, m) */
if (nitems == m) {
(void)test_array(a, nitems, 0); // {0, 0}, {0, 1}, {1, 0}, {1, 1}
}
else for (int i = 0; i < m; ++i) {
a[nitems] = i;
backtrack(a, m, nitems + 1);
}
}