I saw this question on Reddit, and there were no positive solutions presented, and I thought it would be a perfect question to ask here. This was in a thread about interview
MY CURRENT BEST OPTION
def uniqueSet( array )
check_index = 0;
check_value = 0;
min = array[0];
array.each_with_index{ |value,index|
check_index = check_index ^ ( 1 << index );
check_value = check_value ^ ( 1 << value );
min = value if value < min
}
check_index = check_index << min;
return check_index == check_value;
end
O(n) and Space O(1)
I wrote a script to brute force combinations that could fail that and it didn't find any. If you have an array which contravenes this function do tell. :)
@J.F. Sebastian
Its not a true hashing algorithm. Technically, its a highly efficient packed boolean array of "seen" values.
ci = 0, cv = 0
[5,4,3]{
i = 0
v = 5
1 << 0 == 000001
1 << 5 == 100000
0 ^ 000001 = 000001
0 ^ 100000 = 100000
i = 1
v = 4
1 << 1 == 000010
1 << 4 == 010000
000001 ^ 000010 = 000011
100000 ^ 010000 = 110000
i = 2
v = 3
1 << 2 == 000100
1 << 3 == 001000
000011 ^ 000100 = 000111
110000 ^ 001000 = 111000
}
min = 3
000111 << 3 == 111000
111000 === 111000
The point of this being mostly that in order to "fake" most the problem cases one uses duplicates to do so. In this system, XOR penalises you for using the same value twice and assumes you instead did it 0 times.
The caveats here being of course:
$x
in ( 1 << $x > 0 )
ultimate effectiveness depends on how your underlying system implements the abilities to:
edit Noted, above statements seem confusing. Assuming a perfect machine, where an "integer" is a register with Infinite precision, which can still perform a ^ b in O(1) time.
But failing these assumptions, one has to start asking the algorithmic complexity of simple math.