Are there are any cases where you would prefer O(log n)
time complexity to O(1)
time complexity? Or O(n)
to O(log n)
?
Consider a red-black tree. It has access, search, insert, and delete of O(log n)
. Compare to an array, which has access of O(1)
and the rest of the operations are O(n)
.
So given an application where we insert, delete, or search more often than we access and a choice between only these two structures, we would prefer the red-black tree. In this case, you might say we prefer the red-black tree's more cumbersome O(log n)
access time.
Why? Because the access is not our overriding concern. We are making a trade off: the performance of our application is more heavily influenced by factors other than this one. We allow this particular algorithm to suffer performance because we make large gains by optimizing other algorithms.
So the answer to your question is simply this: when the algorithm's growth rate isn't what we want to optimize, when we want to optimize something else. All of the other answers are special cases of this. Sometimes we optimize the run time of other operations. Sometimes we optimize for memory. Sometimes we optimize for security. Sometimes we optimize maintainability. Sometimes we optimize for development time. Even the overriding constant being low enough to matter is optimizing for run time when you know the growth rate of the algorithm isn't the greatest impact on run time. (If your data set was outside this range, you would optimize for the growth rate of the algorithm because it would eventually dominate the constant.) Everything has a cost, and in many cases, we trade the cost of a higher growth rate for the algorithm to optimize something else.