I have a need for a fixed-size (selectable at run-time when creating it, not compile-time) circular buffer which can hold objects of any type and it needs to be very
// Note power of two buffer size
#define kNumPointsInMyBuffer 1024
typedef struct _ringBuffer {
UInt32 currentIndex;
UInt32 sizeOfBuffer;
double data[kNumPointsInMyBuffer];
} ringBuffer;
// Initialize the ring buffer
ringBuffer *myRingBuffer = (ringBuffer *)calloc(1, sizeof(ringBuffer));
myRingBuffer->sizeOfBuffer = kNumPointsInMyBuffer;
myRingBuffer->currentIndex = 0;
// A little function to write into the buffer
// N.B. First argument of writeIntoBuffer() just happens to have the
// same as the one calloc'ed above. It will only point to the same
// space in memory if the calloc'ed pointer is passed to
// writeIntoBuffer() as an arg when the function is called. Consider
// using another name for clarity
void writeIntoBuffer(ringBuffer *myRingBuffer, double *myData, int numsamples) {
// -1 for our binary modulo in a moment
int buffLen = myRingBuffer->sizeOfBuffer - 1;
int lastWrittenSample = myRingBuffer->currentIndex;
int idx;
for (int i=0; i < numsamples; ++i) {
// modulo will automagically wrap around our index
idx = (i + lastWrittenSample) & buffLen;
myRingBuffer->data[idx] = myData[i];
}
// Update the current index of our ring buffer.
myRingBuffer->currentIndex += numsamples;
myRingBuffer->currentIndex &= myRingBuffer->sizeOfBuffer - 1;
}
As long as your ring buffer's length is a power of two, the incredibly fast binary "&" operation will wrap around your index for you. For my application, I'm displaying a segment of audio to the user from a ring buffer of audio acquired from a microphone.
I always make sure that the maximum amount of audio that can be displayed on screen is much less than the size of the ring buffer. Otherwise you might be reading and writing from the same chunk. This would likely give you weird display artifacts.