I have checked the official Android documentation/guide for Looper, Handler and MessageQueue . But I couldn\'t get it. I am new to and
Let's start with the Looper. You can understand the relationship between Looper, Handler and MessageQueue more easily when you understand what Looper is. Also you can better understand what Looper is in the context of GUI framework. Looper is made to do 2 things.
1) Looper transforms a normal thread, which terminates when its run() method returns, into something that runs continuously until Android app is running, which is needed in GUI framework (Technically, it still terminates when run() method returns. But let me clarify what I mean, below).
2) Looper provides a queue where jobs to be done are enqueued, which is also needed in GUI framework.
As you may know, when an application is launched, the system creates a thread of execution for the application, called “main”, and Android applications normally run entirely on a single thread by default the “main thread”. But main thread is not some secret, special thread. It's just a normal thread that you can also create with new Thread() code, which means it terminates when its run() method returns! Think of below example.
public class HelloRunnable implements Runnable {
public void run() {
System.out.println("Hello from a thread!");
}
public static void main(String args[]) {
(new Thread(new HelloRunnable())).start();
}
}
Now, let's apply this simple principle to Android app. What would happen if an Android app is run on a normal thread? A thread called "main" or "UI" or whatever starts application, and draws all UI. So, the first screen is displayed to users. So what now? The main thread terminates? No, it shouldn’t. It should wait until users do something, right? But how can we achieve this behavior? Well, we can try with Object.wait() or Thread.sleep(). For example, main thread finishes its initial job to display first screen, and sleeps. It awakes, which means interrupted, when a new job to do is fetched. So far so good, but at this moment we need a queue-like data structure to hold multiple jobs. Think about a case when a user touches screen serially, and a task takes longer time to finish. So, we need to have a data structure to hold jobs to be done in first-in-first-out manner. Also, you may imagine, implementing ever-running-and-process-job-when-arrived thread using interrupt is not easy, and leads to complex and often unmaintainable code. We'd rather create a new mechanism for such purpose, and that is what Looper is all about. The official document of Looper class says, "Threads by default do not have a message loop associated with them", and Looper is a class "used to run a message loop for a thread". Now you can understand what it means.
Let's move to Handler and MessageQueue. First, MessageQueue is the queue that I mentioned above. It resides inside a Looper, and that's it. You can check it with Looper class's source code. Looper class has a member variable of MessageQueue.
Then, what is Handler? If there is a queue, then there should be a method that should enable us to enqueue a new task to the queue, right? That is what Handler does. We can enqueue a new task into a queue(MessageQueue) using various post(Runnable r) methods. That's it. This is all about Looper, Handler, and MessageQueue.
My last word is, so basically Looper is a class that is made to address a problem that occurs in GUI framework. But this kind of needs also can happen in other situations as well. Actually it is a pretty famous pattern for multi threads application, and you can learn more about it in "Concurrent Programming in Java" by Doug Lea(Especially, chapter 4.1.4 "Worker Threads" would be helpful). Also, you can imagine this kind of mechanism is not unique in Android framework, but all GUI frameworks may need somewhat similar to this. You can find almost same mechanism in Java Swing framework.