I\'m looking for the fastest way to obtain the value of π, as a personal challenge. More specifically, I\'m using ways that don\'t involve using #define
constan
Pi is exactly 3! [Prof. Frink (Simpsons)]
Joke, but here's one in C# (.NET-Framework required).
using System;
using System.Text;
class Program {
static void Main(string[] args) {
int Digits = 100;
BigNumber x = new BigNumber(Digits);
BigNumber y = new BigNumber(Digits);
x.ArcTan(16, 5);
y.ArcTan(4, 239);
x.Subtract(y);
string pi = x.ToString();
Console.WriteLine(pi);
}
}
public class BigNumber {
private UInt32[] number;
private int size;
private int maxDigits;
public BigNumber(int maxDigits) {
this.maxDigits = maxDigits;
this.size = (int)Math.Ceiling((float)maxDigits * 0.104) + 2;
number = new UInt32[size];
}
public BigNumber(int maxDigits, UInt32 intPart)
: this(maxDigits) {
number[0] = intPart;
for (int i = 1; i < size; i++) {
number[i] = 0;
}
}
private void VerifySameSize(BigNumber value) {
if (Object.ReferenceEquals(this, value))
throw new Exception("BigNumbers cannot operate on themselves");
if (value.size != this.size)
throw new Exception("BigNumbers must have the same size");
}
public void Add(BigNumber value) {
VerifySameSize(value);
int index = size - 1;
while (index >= 0 && value.number[index] == 0)
index--;
UInt32 carry = 0;
while (index >= 0) {
UInt64 result = (UInt64)number[index] +
value.number[index] + carry;
number[index] = (UInt32)result;
if (result >= 0x100000000U)
carry = 1;
else
carry = 0;
index--;
}
}
public void Subtract(BigNumber value) {
VerifySameSize(value);
int index = size - 1;
while (index >= 0 && value.number[index] == 0)
index--;
UInt32 borrow = 0;
while (index >= 0) {
UInt64 result = 0x100000000U + (UInt64)number[index] -
value.number[index] - borrow;
number[index] = (UInt32)result;
if (result >= 0x100000000U)
borrow = 0;
else
borrow = 1;
index--;
}
}
public void Multiply(UInt32 value) {
int index = size - 1;
while (index >= 0 && number[index] == 0)
index--;
UInt32 carry = 0;
while (index >= 0) {
UInt64 result = (UInt64)number[index] * value + carry;
number[index] = (UInt32)result;
carry = (UInt32)(result >> 32);
index--;
}
}
public void Divide(UInt32 value) {
int index = 0;
while (index < size && number[index] == 0)
index++;
UInt32 carry = 0;
while (index < size) {
UInt64 result = number[index] + ((UInt64)carry << 32);
number[index] = (UInt32)(result / (UInt64)value);
carry = (UInt32)(result % (UInt64)value);
index++;
}
}
public void Assign(BigNumber value) {
VerifySameSize(value);
for (int i = 0; i < size; i++) {
number[i] = value.number[i];
}
}
public override string ToString() {
BigNumber temp = new BigNumber(maxDigits);
temp.Assign(this);
StringBuilder sb = new StringBuilder();
sb.Append(temp.number[0]);
sb.Append(System.Globalization.CultureInfo.CurrentCulture.NumberFormat.CurrencyDecimalSeparator);
int digitCount = 0;
while (digitCount < maxDigits) {
temp.number[0] = 0;
temp.Multiply(100000);
sb.AppendFormat("{0:D5}", temp.number[0]);
digitCount += 5;
}
return sb.ToString();
}
public bool IsZero() {
foreach (UInt32 item in number) {
if (item != 0)
return false;
}
return true;
}
public void ArcTan(UInt32 multiplicand, UInt32 reciprocal) {
BigNumber X = new BigNumber(maxDigits, multiplicand);
X.Divide(reciprocal);
reciprocal *= reciprocal;
this.Assign(X);
BigNumber term = new BigNumber(maxDigits);
UInt32 divisor = 1;
bool subtractTerm = true;
while (true) {
X.Divide(reciprocal);
term.Assign(X);
divisor += 2;
term.Divide(divisor);
if (term.IsZero())
break;
if (subtractTerm)
this.Subtract(term);
else
this.Add(term);
subtractTerm = !subtractTerm;
}
}
}