I had this question on an Algorithms test yesterday, and I can\'t figure out the answer. It is driving me absolutely crazy, because it was worth about 40 points. I figure
Revision: 2009-10-17 23:00
I've run this on large numbers (like, strings of 20 million) and I now believe this algorithm is not O(n logn). Notwithstanding that, it's a cool enough implementation and contains a number of optimizations that makes it run really fast. It evaluates all the arrangements of binary strings 24 or fewer digits in under 25 seconds.
I've updated the code to include the 0 <= L < M < U <= X-1
observation from earlier today.
Original
This is, in concept, similar to another question I answered. That code also looked at three values in a series and determined if a triplet satisfied a condition. Here is C# code adapted from that:
using System;
using System.Collections.Generic;
namespace StackOverflow1560523
{
class Program
{
public struct Pair
{
public T Low, High;
}
static bool FindCandidate(int candidate,
List arr,
List pool,
Pair pair,
ref int iterations)
{
int lower = pair.Low, upper = pair.High;
while ((lower >= 0) && (upper < pool.Count))
{
int lowRange = candidate - arr[pool[lower]];
int highRange = arr[pool[upper]] - candidate;
iterations++;
if (lowRange < highRange)
lower -= 1;
else if (lowRange > highRange)
upper += 1;
else
return true;
}
return false;
}
static List BuildOnesArray(string s)
{
List arr = new List();
for (int i = 0; i < s.Length; i++)
if (s[i] == '1')
arr.Add(i);
return arr;
}
static void BuildIndexes(List arr,
ref List even, ref List odd,
ref List> evenIndex, ref List> oddIndex)
{
for (int i = 0; i < arr.Count; i++)
{
bool isEven = (arr[i] & 1) == 0;
if (isEven)
{
evenIndex.Add(new Pair {Low=even.Count-1, High=even.Count+1});
oddIndex.Add(new Pair {Low=odd.Count-1, High=odd.Count});
even.Add(i);
}
else
{
oddIndex.Add(new Pair {Low=odd.Count-1, High=odd.Count+1});
evenIndex.Add(new Pair {Low=even.Count-1, High=even.Count});
odd.Add(i);
}
}
}
static int FindSpacedOnes(string s)
{
// List of indexes of 1s in the string
List arr = BuildOnesArray(s);
//if (s.Length < 3)
// return 0;
// List of indexes to odd indexes in arr
List odd = new List(), even = new List();
// evenIndex has indexes into arr to bracket even numbers
// oddIndex has indexes into arr to bracket odd numbers
List> evenIndex = new List>(),
oddIndex = new List>();
BuildIndexes(arr,
ref even, ref odd,
ref evenIndex, ref oddIndex);
int iterations = 0;
for (int i = 1; i < arr.Count-1; i++)
{
int target = arr[i];
bool found = FindCandidate(target, arr, odd, oddIndex[i], ref iterations) ||
FindCandidate(target, arr, even, evenIndex[i], ref iterations);
if (found)
return iterations;
}
return iterations;
}
static IEnumerable PowerSet(int n)
{
for (long i = (1L << (n-1)); i < (1L << n); i++)
{
yield return Convert.ToString(i, 2).PadLeft(n, '0');
}
}
static void Main(string[] args)
{
for (int i = 5; i < 64; i++)
{
int c = 0;
string hardest_string = "";
foreach (string s in PowerSet(i))
{
int cost = find_spaced_ones(s);
if (cost > c)
{
hardest_string = s;
c = cost;
Console.Write("{0} {1} {2}\r", i, c, hardest_string);
}
}
Console.WriteLine("{0} {1} {2}", i, c, hardest_string);
}
}
}
}
The principal differences are:
The general idea is to work on indexes, not the raw representation of the data. Calculating an array where the 1's appear allows the algorithm to run in time proportional to the number of 1's in the data rather than in time proportional to the length of the data. This is a standard transformation: create a data structure that allows faster operation while keeping the problem equivalent.
The results are out of date: removed.
Edit: 2009-10-16 18:48
On yx's data, which is given some credence in the other responses as representative of hard data to calculate on, I get these results... I removed these. They are out of date.
I would point out that this data is not the hardest for my algorithm, so I think the assumption that yx's fractals are the hardest to solve is mistaken. The worst case for a particular algorithm, I expect, will depend upon the algorithm itself and will not likely be consistent across different algorithms.
Edit: 2009-10-17 13:30
Further observations on this.
First, convert the string of 0's and 1's into an array of indexes for each position of the 1's. Say the length of that array A is X. Then the goal is to find
0 <= L < M < U <= X-1
such that
A[M] - A[L] = A[U] - A[M]
or
2*A[M] = A[L] + A[U]
Since A[L] and A[U] sum to an even number, they can't be (even, odd) or (odd, even). The search for a match could be improved by splitting A[] into odd and even pools and searching for matches on A[M] in the pools of odd and even candidates in turn.
However, this is more of a performance optimization than an algorithmic improvement, I think. The number of comparisons should drop, but the order of the algorithm should be the same.
Edit 2009-10-18 00:45
Yet another optimization occurs to me, in the same vein as separating the candidates into even and odd. Since the three indexes have to add to a multiple of 3 (a, a+x, a+2x -- mod 3 is 0, regardless of a and x), you can separate L, M, and U into their mod 3 values:
M L U
0 0 0
1 2
2 1
1 0 2
1 1
2 0
2 0 1
1 0
2 2
In fact, you could combine this with the even/odd observation and separate them into their mod 6 values:
M L U
0 0 0
1 5
2 4
3 3
4 2
5 1
and so on. This would provide a further performance optimization but not an algorithmic speedup.