I have a data frame in R that contains the gene ids of paralogous genes in Arabidopsis, looking something like this:
gene_x gene_y
AT1
A dplyr possibility could be:
mydf %>%
group_by(grp = paste(pmax(gene_x, gene_y), pmin(gene_x, gene_y), sep = "_")) %>%
slice(1) %>%
ungroup() %>%
select(-grp)
gene_x gene_y
1 AT1 AT2
2 AT1 AT3
3 AT3 AT4
Or:
mydf %>%
group_by(grp = paste(pmax(gene_x, gene_y), pmin(gene_x, gene_y), sep = "_")) %>%
filter(row_number() == 1) %>%
ungroup() %>%
select(-grp)
Or:
mydf %>%
group_by(grp = paste(pmax(gene_x, gene_y), pmin(gene_x, gene_y), sep = "_")) %>%
distinct(grp, .keep_all = TRUE) %>%
ungroup() %>%
select(-grp)
Or using dplyr and purrr:
mydf %>%
group_by(grp = paste(invoke(pmax, .), invoke(pmin, .), sep = "_")) %>%
slice(1) %>%
ungroup() %>%
select(-grp)
And as of purrr 0.3.0 invoke() is retired, exec() should be used instead:
mydf %>%
group_by(grp = paste(exec(pmax, !!!.), exec(pmin, !!!.), sep = "_")) %>%
slice(1) %>%
ungroup() %>%
select(-grp)
Or:
df %>%
rowwise() %>%
mutate(grp = paste(sort(c(gene_x, gene_y)), collapse = "_")) %>%
group_by(grp) %>%
slice(1) %>%
ungroup() %>%
select(-grp)